Fen Bilimleri Eğitiminde Yapay Zekâ Kullanımıyla İlgili Yapılan Çalışmaların Sistematik Derlemesi

Yazarlar

  • Fatoş BEYAZ ERKUT Adıyaman Üniversitesi
  • Gülden GÜRSOY

DOI:

https://doi.org/10.63556/ankad.v9i4.258

Anahtar Kelimeler:

Fen bilimleri eğitimİ- yapay zekâ- sistematik derleme- PRISMA

Özet

Bu çalışma, 2018-2024 yılları arasında fen bilimleri eğitiminde yapay zekâ (YZ) kullanımına ilişkin yapılan araştırmaları sistematik bir derleme yöntemiyle incelemeyi amaçlamaktadır. Araştırma kapsamında Scopus, Web of Science, ERIC, TR Dizin, ScienceDirect, Google Akademik ve ProQuest veri tabanları taranarak, belirlenen kriterlere uygun 60 makale analize dahil edilmiştir. Çalışmada içerik analizi yöntemi kullanılarak, seçilen yayınlar; yayın yılı, anahtar kavramlar, araştırma yöntemi, çalışma grubu, veri toplama araçları ve veri analiz teknikleri açısından kategorize edilmiştir. Elde edilen bulgular, fen bilimleri eğitiminde YZ kullanımına yönelik en fazla çalışmanın 2024 yılında gerçekleştirildiğini göstermektedir. Araştırmalarda ağırlıklı olarak nitel yöntemlerin benimsendiği, veri toplama aracı olarak en sık görüşme tekniğinin kullanıldığı tespit edilmiştir. Çalışma gruplarının büyük çoğunluğunu öğrenciler ve öğretmenler oluştururken, veri analizinde içerik analizinin yaygın olarak tercih edildiği görülmüştür. Bu sonuçlar, fen bilimleri eğitiminde YZ entegrasyonunun giderek arttığını ve alanda nitel araştırmaların öne çıktığını ortaya koymaktadır. Çalışma, fen bilimleri eğitiminde YZ uygulamalarına dair mevcut eğilimleri bütüncül bir bakış açısıyla sunarak, gelecekteki araştırmalar için yol gösterici olmayı hedeflemektedir. Özellikle öğrenci ve öğretmen perspektiflerinin ön planda olduğu bu alanda, nicel ve karma yöntemlerin kullanıldığı çalışmaların artırılması önerilebilir. 

Bu çalışma, 2018-2024 yılları arasında fen bilimleri eğitiminde yapay zekâ (YZ) kullanımına ilişkin yapılan araştırmaları sistematik bir derleme yöntemiyle incelemeyi amaçlamaktadır. Araştırma kapsamında Scopus, Web of Science, ERIC, TR Dizin, ScienceDirect, Google Akademik ve ProQuest veri tabanları taranarak, belirlenen kriterlere uygun 60 makale analize dahil edilmiştir. Çalışmada içerik analizi yöntemi kullanılarak, seçilen yayınlar; yayın yılı, anahtar kavramlar, araştırma yöntemi, çalışma grubu, veri toplama araçları ve veri analiz teknikleri açısından kategorize edilmiştir. Elde edilen bulgular, fen bilimleri eğitiminde YZ kullanımına yönelik en fazla çalışmanın 2024 yılında gerçekleştirildiğini göstermektedir. Araştırmalarda ağırlıklı olarak nitel yöntemlerin benimsendiği, veri toplama aracı olarak en sık görüşme tekniğinin kullanıldığı tespit edilmiştir. Çalışma gruplarının büyük çoğunluğunu öğrenciler ve öğretmenler oluştururken, veri analizinde içerik analizinin yaygın olarak tercih edildiği görülmüştür. Bu sonuçlar, fen bilimleri eğitiminde YZ entegrasyonunun giderek arttığını ve alanda nitel araştırmaların öne çıktığını ortaya koymaktadır. Çalışma, fen bilimleri eğitiminde YZ uygulamalarına dair mevcut eğilimleri bütüncül bir bakış açısıyla sunarak, gelecekteki araştırmalar için yol gösterici olmayı hedeflemektedir. Özellikle öğrenci ve öğretmen perspektiflerinin ön planda olduğu bu alanda, nicel ve karma yöntemlerin kullanıldığı çalışmaların artırılması önerilebilir. 

Yazar Biyografisi

Fatoş BEYAZ ERKUT, Adıyaman Üniversitesi

fen bilgisi

Referanslar

Aebi, A. A., & Karal, H. (2017). An application of fuzzy analytic hierarchy process (FAHP) for evaluating students’ project. Educational Research and Reviews, 12(3), 120–132.

Akdeniz, M., & Özdinç, F. (2021). Eğitimde yapay zekâ konusunda Türkiye adresli çalışmaların incelenmesi [A review of Turkey-based studies on artificial intelligence in education]. Van Yüzüncü Yıl Üniversitesi Eğitim Fakültesi Dergisi, 18(1), 912–932.

Akhmadieva, R. S., Udina, N. N., Kosheleva, Y. P., Zhdanov, S. P., Timofeeva, M. O., & Budkevich, R. L. (2023). Artificial intelligence in science education: A bibliometric review. Contemporary Educational Technology, 15(4), ep460. https://doi.org/10.30935/cedtech/13587

Akmese, O. F., Kor, H., & Erbay, H. (2021). Use of machine learning techniques for the forecast of student achievement in higher education. Information Technologies and Learning Tools, 82(2), 297–311.

Al Darayseh, A. (2023). Acceptance of artificial intelligence in teaching science: Science teachers' perspective. Computers and Education: Artificial Intelligence, 4, 100132. https://doi.org/10.1016/j.caeai.2023.100132

Al Husaeni, D. F., Haristiani, N., Wahyudin, W., & Rasim, R. (2024). Chatbot artificial intelligence as educational tools in science and engineering education: A literature review and bibliometric mapping analysis with its advantages and disadvantages. ASEAN Journal of Science and Engineering, 4(1), 93–118.

Aldeman, N. L. S., Aita, K., Machado, V. P., da Mata Sousa, L. C. D., Coelho, A. G. B., da Silva, A. S., Mendes, A. P. D., Neres, F. J. D., & do Monte, S. J. H. (2021). Smartpath (k): A platform for teaching glomerulopathies using machine learning. BMC Medical Education, 21(1), 1–12. https://doi.org/10.1186/s12909-021-02750-4

Alissa, R. A. S., & Hamadneh, M. A. (2023). The level of science and mathematics teachers’ employment of artificial intelligence applications in the educational process. International Journal of Education in Mathematics, Science, and Technology, 11(6), 1597–1608.

AlKanaan, H. M. N. (2022). Awareness regarding the implication of artificial intelligence in science education among pre-service science teachers. International Journal of Instruction, 15(3), 895–912.

Alkış Küçükaydın, M. (2020). Fen eğitiminde kavram öğretimi konulu araştırmaların sistematik derleme yöntemiyle incelenmesi [A systematic review of research on concept teaching in science education]. Ege Eğitim Dergisi, 21(2), 36–56. https://doi.org/10.12984/egeefd.746326

Almasri, F. (2024). Exploring the impact of artificial intelligence in teaching and learning of science: A systematic review of empirical research. Research in Science Education, 54(5), 977–997. https://doi.org/10.1007/s11165-023-10145-2

Alneyadi, S., Almessabi, A., & Alshraifin, N. (2024). Exploring science teachers' perceptions and practices in integrating STEM and AI through mind mapping: A case study in the UAE. Journal of Ecohumanism, 3(3), 1239–1252.

Alshorman, S. M. (2024). The readiness to use AI in teaching science: Science teachers' perspective. Journal of Baltic Science Education, 23(3), 432–448.

Anderson, R. M., Heesterbeek, H., Klinkenberg, D., & Hollingsworth, T. D. (2021). The impact of non-pharmaceutical interventions on COVID-19 cases. The Lancet, 395(10238), 1833–1836. https://doi.org/10.1016/S0140-6736(20)30967-9

Antonenko, P., & Abramowitz, B. (2023). In-service teachers’(mis) conceptions of artificial intelligence in K-12 science education. Journal of Research on Technology in Education, 55(1), 64-78.

Aricı, F. (2024). Examination of research conducted on the use of artificial intelligence in science education. Sakarya University Journal of Education, 14(3), 539–562.

Arora, A., Alderman, J. E., Palmer, J., Ganapathi, S., Laws, E., Mccradden, M. D., ... & Liu, X. (2023). The value of standards for health datasets in artificial intelligence-based applications. Nature Medicine, 29(11), 2929–2938.

Arslan, K. (2020). Eğitimde yapay zekâ ve uygulamaları [Artificial intelligence and its applications in education]. Batı Anadolu Eğitim Bilimleri Dergisi, 11(1), 71–88.

Bartels, S., & Lederman, J. (2022). What do elementary students know about science, scientists and how they do their work?. International Journal of Science Education, 44(4), 627-646.

Bayram, K., & Çelik, H. (2023). Yapay zekâ konusunda muhakeme ve girişimcilik becerileriyle bütünleştirilmiş sosyo-bilim etkinliği: Fen bilgisi öğretmen adaylarının görüşleri [A socio-scientific activity integrating reasoning and entrepreneurship skills on artificial intelligence: Views of pre-service science teachers]. Fen Bilimleri Öğretimi Dergisi, 11(1), 41–78.

Bellod, H. C., Ramón, V. B., Fernández, E. C., & Luján, J. F. G. (2021). Analysis of stress and academic-sports commitment through self-organizing artificial neural networks. Challenges, 42, 136–144.

Bewersdorff, A., Hartmann, C., Hornberger, M., Seßler, K., Bannert, M., Kasneci, E., ... & Nerdel, C. (2025). Taking the next step with generative artificial intelligence: The transformative role of multimodal large language models in science education. Learning and Individual Differences, 118, 102601.

Bircan, T., & Salah, A. A. A. (2022). A bibliometric analysis of the use of artificial intelligence technologies for social sciences. Mathematics, 10(23), 4398.

Blonder, R., Feldman-Maggor, Y., & Rap, S. (2024). Are they ready to teach? Generative AI as a means to uncover pre-service science teachers’ PCK and enhance their preparation program. Journal of Science Education and Technology. https://doi.org/10.1007/s10956-024-10045-9

Bonneton-Botte, N., Fleury, S., Girard, N., Le Magadou, M., Cherbonnier, A., Renault, M., Anquetil, E., & Jamet, E. (2020). Can tablet apps support the learning of handwriting? An investigation of learning outcomes in kindergarten classroom. Computers & Education, 151, 103831.

Cevahir, E. (2020). SPSS ile nicel veri analizi rehberi. Kibele Yayınları. https://www.researchgate.net/publication/343022256_SPSS_ile_Nicel_Veri_Analizi_Rehberi

Chen, L., Chen, P., & Lin, Z. (2020). Artificial intelligence in education: A review. IEEE Access, 8, 75264-75278. https://doi.org/10.1080/03055698.2022.2066462

Chen, P. Y., & Liu, Y. C. (2024). Impact of AI robot image recognition technology on improving students' conceptual understanding of cell division and science learning motivation. Journal of Baltic Science Education, 23(2), 208–220.

Cheung, K. K. C., Long, Y., Liu, Q., & Chan, H. Y. (2024). Unpacking epistemic insights of artificial intelligence (AI) in science education: A systematic review. Science & Education, 1–31.

Christou, A. (2023). Conceptual clarification before technological adaptation: A framework for AI integration in science education. Educational Technology Research and Development, 71(3), 1125–1143.

Cooper, G. (2023). Examining science education in ChatGPT: An exploratory study of generative artificial intelligence. Journal of Science Education and Technology, 32, 444–452.

Cooper, G., & Tang, K. S. (2024). Pixels and pedagogy: Examining science education imagery by generative artificial intelligence. Journal of Science Education and Technology, 33(4), 556-568. https://doi.org/10.1007/s10956-024-10104-0

Crowe, D., LaPierre, M., & Kebritchi, M. (2017). Knowledge based artificial augmentation intelligence technology: Next step in academic instructional tools for distance learning. TechTrends, 61(5), 494–506.

Çam, M. B., Çelik, N. C., Turan Güntepe, E., & Durukan, Ü. G. (2021). Öğretmen adaylarının yapay zekâ teknolojileri ile ilgili farkındalıklarının belirlenmesi [Determining pre-service teachers' awareness of artificial intelligence technologies]. Hatay Mustafa Kemal Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 18(48), 263–285.

Çetin, A., Gündoğdu, B., Hökkaş, H., & Genç, M. (2023). Stem eğitimi yaklaşımı konulu araştırmalar üzerine sistematik bir derleme. Düzce Üniversitesi Sosyal Bilimler Dergisi, 13(1), 1-23.

Deroncele-Acosta, A., Bellido-Valdiviezo, O., Sánchez-Trujillo, M. D. L. Á., Palacios-Núñez, M. L., Rueda-Garcés, H., & Brito-Garcías, J. G. (2024). Ten essential pillars in artificial intelligence for university science education: A scoping review. SAGE Open, 14(3), 21582440241272016. https://doi.org/10.1177/21582440241272016

Deveci Topal, A., Dilek Eren, C., & Kolburan Geçer, A. (2021). Chatbot application in a 5th grade science course. Education and Information Technologies, 26, 6241–6265.

Dos Anjos, J. R., de Souza, M. G., de Andrade Neto, A. S., & de Souza, B. C. (2024). An analysis of the generative AI use as analyst in qualitative research in science education. Revista Pesquisa Qualitativa, 12(30), 1–29.

Elsevier. (2023). Artificial intelligence in education: Global trends and future prospects. Elsevier. https://www.elsevier.com/ai-education-report

Erduran, S., & Levrini, O. (2024). The impact of artificial intelligence on scientific practices: an emergent area of research for science education. International Journal of Science Education, 46(18), 1982-1989. https://doi.org/10.1080/09500693.2024.2306604

Erkoç, M. (2023). Fen bilimleri grubu öğretmenlerinin uzaktan eğitim sürecinde yapay zekâ kullanma durumlarının analizi [Analysis of science teachers' use of artificial intelligence in distance education]. Dokuz Eylül Üniversitesi Buca Eğitim Fakültesi Dergisi, 58, 2682–2704.

Ezquerra, A., Agen, F., Rodríguez-Arteche, I., & Ezquerra-Romano, I. (2022). Integrating Artificial Intelligence into Research on Emotions and Behaviors in Science Education. Eurasia Journal of Mathematics, Science and Technology Education, 18(4).

Genc, H. N. & Kocak, N. (2024). Bibliometric analysis of studies on the artificialintelligence in science education with VOSviewer. Journal of Education in Science,Environment and Health (JESEH), 10(4), 183-195. https://doi.org/10.55549/jeseh.756

Gunawan, K. D. H., Liliasari, L., Kaniawati, I., & Setiawan, W. (2021). Implementation of competency enhancement program for science teachers assisted by artificial intelligence in designing HOTS-based integrated science learning. Jurnal Penelitian dan Pembelajaran IPA, 7(1), 55-65.

Güzey, C., Çakır, O., Athar, M. H., Yurdaöz, E., & Saad, S. (2023). Eğitimde yapay zekâ konusunda yapılmış çalışmaların içerik analizi [Content analysis of studies on artificial intelligence in education]. Bilgi ve İletişim Teknolojileri Dergisi, 5(1), 66–77. https://doi.org/10.53694/bited.1060730

Heeg, D. M., & Avraamidou, L. (2023). The use of Artificial intelligence in school science: a systematic literature review. Educational Media International, 60(2), 125-150. https://doi.org/10.1080/09523987.2023.2264990

Henderson, M., Gruppetta, M., & Southgate, E. (2023). Artificial intelligence in Australian education: Ethical implications and teacher professional development. Australasian Journal of Educational Technology, 39(2), 45–67.

Huang, J., Shen, G., & Ren, X. P. (2021). Connotation analysis and paradigm shift of teaching design under artificial intelligence technology. International Journal of Emerging Technologies in Learning, 16(5), 73–86.

Huang, X. (2022). Application of artificial intelligence APP in quality evaluation of primary school science education. Educational Studies, 50(6), 1215-1235. https://doi.org/10.1080/03055698.2022.2066462

Hwang, G.-J., & Tu, Y.-F. (2024). The evolving landscape of AI in education research: A methodological review. Computers & Education, 201, 104812. https://doi.org/10.1016/j.compedu.2023.104812

IEEE. (2023). Global trends in AI education research: 2023 analysis report. IEEE Xplore Digital Library.

Işık, E., & Köse, M. (2024). Investigating the views of science teachers on augmented reality, artificial intelligence, the metaverse, and their applications in education. Journal of Education in Science, Environment and Health, 10(3), 241–258.

Jia, F., Sun, D., & Looi, C. K. (2024). Artificial intelligence in science education (2013–2023): Research trends over a decade. Journal of Science Education and Technology, 33(1), 94–117. https://doi.org/10.1007/s10956-023-10077-6

Karaçam, Z. (2013). Sistematik derleme metodolojisi: Sistematik derleme hazırlamak için bir rehber [Systematic review methodology: A guide to preparing a systematic review]. Dokuz Eylül Üniversitesi Hemşirelik Fakültesi Elektronik Dergisi, 6(1), 26–33.

Karahan, E. (2023). Using video-elicitation focus group interviews to explore pre-service science teachers’ views and reasoning on artificial intelligence. International Journal of Science Education, 45(15), 1283-1302. https://doi.org/10.1080/09500693.2023.2223491

Karsenti, T. (2019). Artificial intelligence in education: The urgent need to prepare teachers for tomorrow’s schools. SSRN. https://doi.org/10.2139/ssrn.3448956

Kerneža, M., & Zemljak, D. (2023). Science teachers' approach to contemporary assessment with a reading literacy emphasis. Journal of Baltic Science Education, 22(5), 851–864. https://doi.org/10.33225/jbse/23.22.851

Kılınç, S. (2023). Embracing the future of distance science education: Opportunities and challenges of ChatGPT integration. Journal of Educational Technology and Online Learning, 6(4), 714–728.

Kim, W. J. (2022). AI-integrated science teaching through facilitating epistemic discourse in the classroom. Asia-Pacific Science Education, 8(1), 9-42.

Kutlu, Ö. (2024). Ölçme ve durum belirleme sürecindeki bazı kavramlaştırmalar sınıf içi başarıya zarar veriyor [Some conceptualizations in the measurement and assessment process harm classroom success]. Journal of Applied Measurement and Assessment, 1(1), 1–12.

Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33(1), 159–174. https://doi.org/10.2307/2529310

Lee, J., An, T., Chu, H. E., Hong, H. G., & Martin, S. N. (2023). Improving science conceptual understanding and attitudes in elementary science classes through the development and application of a rule-based AI chatbot. Asia-Pacific Science Education, 9(2), 365–412.

Li, M., & Su, Y. (2020). Evaluation of online teaching quality of basic education based on artificial intelligence. International Journal of Emerging Technologies in Learning, 15(16), 147–161. https://doi.org/10.3991/ijet.v15i16.15937

Ling, Y., Jin, Z., Li, Y., & Huang, J. (2022). Learner satisfaction-based research on the application of artificial intelligence science popularization kits. Frontiers in Psychology, 13, 901191. https://doi.org/10.3389/fpsyg.2022.901191

Lopes, L. A. (2024). Creative challenge to stimulate student engagement in natural science education in distance learning. Pedagogical Research, 9(1), em0184. https://doi.org/10.29333/pr/14054

Luckin, R., Cukurova, M., Kent, C., & du Boulay, B. (2022). Empowering educators to be AI-ready. Computers and Education: Artificial Intelligence, 3, 100076. https://doi.org/10.1016/j.caeai.2022.100076

Mahmoud, A. R. M. (2020). Applications of artificial intelligence: An introduction to developing education in light of the challenges posed by the COVID-19 pandemic. International Journal of Research in Educational Sciences, 3(4), 171–224. https://doi.org/10.29009/ijres.3.4.4

Martin, S. N. (2023). Asia-Pacific Science Education (APSE): Can publishing become more equitable in the age of artificial intelligence? Asia-Pacific Science Education, 9(1), 1–8.

McHugh, M. L. (2012). Interrater reliability: The kappa statistic. Biochemia Medica, 22(3), 276–282. https://doi.org/10.11613/BM.2012.031

Meço, G., & Coştu, F. (2022). Eğitimde yapay zekânin kullanilmasi: betimsel içerik analizi çalişmasi. Karadeniz Teknik Üniversitesi Sosyal Bilimler Enstitüsü Sosyal Bilimler Dergisi, 12(23), 171-193.

Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & Prisma Group. (2010). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. International journal of surgery, 8(5), 336-341.

Murphy, R. F. (2019). Artificial intelligence applications to support K–12 teachers and teaching: A review of promising applications, challenges, and risks. RAND Corporation. https://doi.org/10.7249/PE315

Nguyen, H., & Hayward, J. (2024). Applying generative artificial intelligence to critiquing science assessments. Journal of Science Education and Technology, 1–16. https://doi.org/10.1007/s10956-024-10177-x

Nja, C. O., Idiege, K. J., Uwe, U. E., Meremikwu, A. N., Ekon, E. E., Erim, C. M., ... & Cornelius-Ukpepi, B. U. (2023). Adoption of artificial intelligence in science teaching: From the vantage point of the African science teachers. Smart Learning Environments, 10(1), 42. https://doi.org/10.1186/s40561-023-00261-x

Oh, P. S., & Lee, G. G. (2024). Confronting imminent challenges in humane epistemic agency in science education: An interview with ChatGPT. Science & Education. https://doi.org/10.1007/s11191-024-00515-1

Okulu, H. Z., & Muslu, N. (2024). Designing a course for pre-service science teachers using ChatGPT: What ChatGPT brings to the table. Interactive Learning Environments, 32(10), 7450-7467. https://doi.org/10.1080/10494820.2024.2322462

Page, M. J., Moher, D., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., ... & McKenzie, J. E. (2021). PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ, 372, n160. https://doi.org/10.1136/bmj.n160

Park, J., Teo, T. W., Teo, A., et al. (2023). Integrating artificial intelligence into science lessons: Teachers' experiences and views. International Journal of STEM Education, 10, 61. https://doi.org/10.1186/s40594-023-00454-3

Patton, M. Q. (2002). Two decades of developments in qualitative inquiry: A personal, experiential perspective. Qualitative Social Work, 1(3), 261–283. https://doi.org/10.1177/1473325002001003636

Pedaste, M., & Leijen, Ä. (2024). Systematic approaches to technology integration in science education: Challenges and opportunities. Journal of Science Education and Technology, 33(1), 1–15.

Powell, W., & Courchesne, S. (2024). Opportunities and risks involved in using ChatGPT to create first grade science lesson plans. PLOS ONE, 19(6), e0305337. https://doi.org/10.1371/journal.pone.0305337

Ramnarain, U., Ogegbo, A. A., Penn, M., Ojetunde, S., & Mdlalose, N. (2024). Pre-service science teachers' intention to use generative artificial intelligence in inquiry-based teaching. Journal of Science Education and Technology, 1–14.

Sanca, M., Artun, H., & Okur, M. (2022). Fen eğitiminde bulanık mantık uygulamaları neden kullanılmalıdır? Ulusal Eğitim Akademisi Dergisi (UEAD), 6(1), 130–144.

Sarıoğlu, S. (2023). Bilimsel süreç becerilerinin yapay zekâ ile yordanması, öğrenciler ve üstün yetenekli öğrencilerdeki etkililiği. [Predicting scientific process skills with artificial intelligence and its effectiveness in students and gifted students].

Shenton, A. K. (2004). Strategies for ensuring trustworthiness in qualitative research projects. Education for Information, 22(2), 63–75. https://doi.org/10.3233/EFI-2004-22201

Su, K. D. (2022). Implementation of innovative artificial intelligence cognitions with problem-based learning guided tasks to enhance students' performance in science. Journal of Baltic Science Education, 21(2), 245–257.

Tang, K. S., & Cooper, G. (2025). The role of materiality in an era of generative artificial intelligence. Science & Education, 34(2), 731-746. https://doi.org/10.1007/s11191-024-00508-0

Tanjung, Y. I., & Fadillah, M. A. (2024). ChatGPT in Science Education: A Visualization Analysis of Trends and Future Directions. JOIV: International Journal on Informatics Visualization, 8(3-2), 1614-1624. https://dx.doi.org/10.62527/joiv.8.3-2.2987

TÜBİTAK. (2023). Yapay zekâ ve eğitim: Türkiye perspektifi [Artificial intelligence and education: Turkey perspective]. TÜBİTAK Yayınları.

UNESCO. (2022). Education: From disruption to recovery. UNESCO COVID-19 Education Response. https://en.unesco.org/covid19/educationresponse

Verma, G., Campbell, T., Melville, W., & Park, B. Y. (2023). Navigating opportunities and challenges of artificial intelligence: ChatGPT and generative models in science teacher education. Journal of Science Teacher Education, 34(8), 793-798. https://doi.org/10.1080/1046560X.2023.2263251

Wang, J. T. H. (2023). Is the laboratory report dead? AI and ChatGPT. Microbiology Australia, 44, 144–148.

Watters, J., Hill, A., Weinrich, M., Supalo, C., & Jiang, F. (2021). An artificial intelligence tool for accessible science education. Journal of Science Education for Students with Disabilities, 24(1), 1-14. https://doi.org/10.16916/jsesd.2021.0004

Wu, J. Y., & Tsai, C. C. (2022). Harnessing the power of promising technologies to transform science education: Prospects and challenges to promote adaptive epistemic beliefs in science learning. International Journal of Science Education, 44(2), 346–353.

Wu, S. Y., & Yang, K. K. (2022). The effectiveness of teacher support for students’ learning of artificial intelligence popular science activities. Frontiers in Psychology, 13, 868623.

Yılmaz, A. (2024). Öğretmenlerin Fen Eğitiminde Yapay Zekâ, Transhümanizm ve Yaratıcılık Uygulamalarını Kullanmalarının Güçlü ve Zayıf Yönleri. International Journal of Eurasia Social Sciences/Uluslararasi Avrasya Sosyal Bilimler Dergisi, 14(55).

Yorgancı, N., & Işık, N. (2019). Fen bilgisi öğretmen adaylarının genel not ortalamalarının sınıflandırılmasında yapay sinir ağlarının kullanımı. 21. Yüzyılda Eğitim ve Toplum, 8(22), 143-159.

Zawacki-Richter, O., Marín, I. V., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education – Where are the educators? International Journal of Educational Technology in Higher Education, 16(1), 1–27.

Zhai, X. (2021). Practices and theories: How can machine learning assist in innovative assessment practices in science education. Journal of Science Education and Technology, 30, 139–149.

Zhai, X., & Nehm, R. H. (2023). AI and formative assessment: The train has left the station. Journal of Research in Science Teaching, 60(6), 1390-1398. https://doi.org/10.1002/tea.21885

Zhai, X., Yin, Y., Pellegrino, J. W., Haudek, K. C., & Shi, L. (2020). Applying machine learning in science assessment: a systematic review. Studies in Science Education, 56(1), 111-151. https://doi.org/10.1080/03057267.2020.1735757

Zhao, Y., Watterston, J., & Gardner, W. (2021). The changes we need: Education post COVID-19. Journal of Educational Change, 22(1), 3–12. https://doi.org/10.1007/s10833-021-09417-3

Zulfiani, Z., Suwarna, I. P., & Miranto, S. (2018). Science education adaptive learning system as a computer-based science learning with learning style variations. Journal of Baltic Science Education, 17(4), 711–727. https://doi.org/10.33225/jbse/18.17.711

İndir

Yayınlanmış

2025-12-23

Nasıl Atıf Yapılır

BEYAZ ERKUT, F., & GÜRSOY, G. (2025). Fen Bilimleri Eğitiminde Yapay Zekâ Kullanımıyla İlgili Yapılan Çalışmaların Sistematik Derlemesi. Anadolu Kültürel Araştırmalar Dergisi, 9(4), 869–898. https://doi.org/10.63556/ankad.v9i4.258

Benzer Makaleler

<< < 4 5 6 7 8 9 10 11 12 > >> 

Bu makale için ayrıca gelişmiş bir benzerlik araması başlat yapabilirsiniz.